Extensions 1→N→G→Q→1 with N=C22xD21 and Q=C2

Direct product G=NxQ with N=C22xD21 and Q=C2
dρLabelID
C23xD21168C2^3xD21336,227

Semidirect products G=N:Q with N=C22xD21 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD21):1C2 = C2xD84φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21):1C2336,196
(C22xD21):2C2 = D4xD21φ: C2/C1C2 ⊆ Out C22xD21844+(C2^2xD21):2C2336,198
(C22xD21):3C2 = C2xC21:7D4φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21):3C2336,203
(C22xD21):4C2 = C2xC3:D28φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21):4C2336,158
(C22xD21):5C2 = C2xC7:D12φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21):5C2336,159
(C22xD21):6C2 = D6:D14φ: C2/C1C2 ⊆ Out C22xD21844+(C2^2xD21):6C2336,163
(C22xD21):7C2 = C22xS3xD7φ: C2/C1C2 ⊆ Out C22xD2184(C2^2xD21):7C2336,219

Non-split extensions G=N.Q with N=C22xD21 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD21).1C2 = C2.D84φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21).1C2336,100
(C22xD21).2C2 = D42:C4φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21).2C2336,44
(C22xD21).3C2 = C2xD21:C4φ: C2/C1C2 ⊆ Out C22xD21168(C2^2xD21).3C2336,156
(C22xD21).4C2 = C2xC4xD21φ: trivial image168(C2^2xD21).4C2336,195

׿
x
:
Z
F
o
wr
Q
<