Extensions 1→N→G→Q→1 with N=C22×D21 and Q=C2

Direct product G=N×Q with N=C22×D21 and Q=C2
dρLabelID
C23×D21168C2^3xD21336,227

Semidirect products G=N:Q with N=C22×D21 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D21)⋊1C2 = C2×D84φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21):1C2336,196
(C22×D21)⋊2C2 = D4×D21φ: C2/C1C2 ⊆ Out C22×D21844+(C2^2xD21):2C2336,198
(C22×D21)⋊3C2 = C2×C217D4φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21):3C2336,203
(C22×D21)⋊4C2 = C2×C3⋊D28φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21):4C2336,158
(C22×D21)⋊5C2 = C2×C7⋊D12φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21):5C2336,159
(C22×D21)⋊6C2 = D6⋊D14φ: C2/C1C2 ⊆ Out C22×D21844+(C2^2xD21):6C2336,163
(C22×D21)⋊7C2 = C22×S3×D7φ: C2/C1C2 ⊆ Out C22×D2184(C2^2xD21):7C2336,219

Non-split extensions G=N.Q with N=C22×D21 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D21).1C2 = C2.D84φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21).1C2336,100
(C22×D21).2C2 = D42⋊C4φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21).2C2336,44
(C22×D21).3C2 = C2×D21⋊C4φ: C2/C1C2 ⊆ Out C22×D21168(C2^2xD21).3C2336,156
(C22×D21).4C2 = C2×C4×D21φ: trivial image168(C2^2xD21).4C2336,195

׿
×
𝔽